Tuesday, May 5, 2020
History Of Computers Essay Questions Example For Students
History Of Computers Essay Questions History of the Computer IndustryOnly once in a lifetime will a new invention come about to touch every aspect of our lives. Such a device that changes the way we work, live, and play is a special one, indeed. A machine that has done all this and more now exists in nearly every business in the U.S. and one out of every two households (Hall, 156). This incredible invention is the computer. The electronic computer has been around for over a half-century, but its ancestors have been around for 2000 years. However, only in the last 40 years has it changed the American Society. From the first wooden abacus to the latest high-speed microprocessor, the computer has changed nearly every aspect of peopleââ¬â¢s lives for the better. The very earliest existence of the modern day computerââ¬â¢s ancestor is the abacus. These date back to almost 2000 years ago. It is simply a wooden rack holding parallel wires on which beads are strung. When these beads are moved along the wire according to ââ¬Å"programmingâ⬠rules that the user must memorize, all ordinary arithmetic operations can be performed (Soma, 14). The next innovation in computers took place in 1694 when Blaise Pascal invented the first digital calculating machine. It could only add numbers and they had to be entered by turning dials. It was designed to help Pascalââ¬â¢s father who was a tax collector (Soma, 32). In the early 1800ââ¬â¢s, a mathematics professor named Charles Babbage designed an automatic calculation machine. IT was steam powered and could store up to 1000 50-digit numbers. Built in to his machine were operations that included everything a modern general-purpose computer would need. It was programmed by and stored data on cards with holes punched in them, appropriately called punchcards. His inventions were failures for the most part because of the lack of precision machining techniques used at the time and the lack of demand for such a device (Soma, 46). After Babbage, people began to lose interest in computers. However, between 1850 and 1900 there were great advances in mathematics and physics that began to rekindle the interest (Osborne, 45). Many of these new advances involved complex calculations and formulas that were very time consuming for human calculation. The first major use for a computer in the U.S. was during the 1890 census. Two men, Herman Hollerith and James Powers, developed a new punched-card system that could automatically read information on cards without human intervention (Gulliver, 82). Since the population of the U.S. was increasing so fast, the computer was an essential tool in tabulating the totals. These advantages were noted by commercial industries and soon led to the development of improved punch-card business-machine systems by International Business Machines (IBM), Remington-Rand, Burroughs, and other corporations. By modern standards the punched-card machines were slow, typically processing from 50 to 250 cards per minute, with each card holding up to 80 digits. At the time, however, punched cards were an enormous step forward: they provided a means of input, output, and memory storage on a massive scale. For more than 50 years following their first use, punched-card machines did the bulk of the worldââ¬â¢s business computing and a good portion of the computing work in science (Chposky, 73). By the late 1930ââ¬â¢s punched-card machine techniques had become so well established and reliable that Howard Hathaway Aiken, in collaboration with engineers at IBM, undertook construction of a large automatic digital computer based on standard IBM electromechanical parts. Aikenââ¬â¢s machine, called the Harvard Mark I, handled 23-digit numbers and could perform all four arithmetic operations. Also, it had special built-in programs to handle logarithms and trigonometric functions. The Mark I was controlled from prepunched paper tape. Output was by card punch and electric typewriter. It was slow, requiring 3 to 5 seconds for a multiplication, but it was fully automatic and could complete long computations without human intervention (Chposky, 103). The outbreak of World War II produced a desperate need for computing capability, especially for the military. New weapons systems were produced which needed trajectory tables and other essential data. In 1942, John P. Eckert, John W. Mauchley, and their associates at the University of Pennsylvania decided to build a high-speed electronic computer to do the job. This machine became known as ENIAC, for ââ¬Å"Electrical Numerical Integrator And Calculatorâ⬠. It could multiply two numbers at the rate of 300 products per second, by finding the value of each product from a multiplication table stored in its memory. ENIAC was thus about 1,000 times faster than the pervious generation of computers (Dolotta, 47). ENIAC used 18,000 standard vacuum tubes, occupied 1800 square feet of floor space, and used about 180,000 watts of electricity. It used punched-card input and output. The ENIAC was very difficult to program because one had to essentially rewrite it to perform whatever task he w anted the computer to do. It was, however, efficient in handling the particular programs for which it had been designed. ENIAC is generally accepted as the first successful high-speed electronic digital computer and was used in many applications from 1946 to 1955 (Dolotta, 50). Legallization of Marijuana anti EssayA new revolution in computer hardware was now well under way; involving miniaturization of computer logic circuitry and of component manufacture by what are called large-scale integration techniques. In the 1950s it was realized that ââ¬Å"scaling downâ⬠the size of electronic digital computer circuits and parts would increase speed and efficiency and improve performance. However, at that time the manufacturing methods were not good enough to accomplish such a task. About 1960-photo printing of conductive circuit boards to eliminate wiring became highly developed. Then it became possible to build resistors and capacitors into the circuitry by photographic means (Rogers, 142). In the 1970s entire assemblies, such as adders, shifting registers, and counters, became available on tiny chips of silicon. In the 1980s very large scale integration (VLSI), in which hundreds of thousands of transistors are placed on a single chip, became increasingl y common. Many companies, some new to the computer field, introduced in the 1970s programmable minicomputers supplied with software packages. The size reduction trend continued with the introduction of personal computers, which are programmable machines small enough and inexpensive enough to be purchased and used by individuals (Rogers, 153). One of the firsts of such machines was introduced in January 1975. Popular Electronics magazine provided plans that would allow any electronics wizard to build his own small, programmable computer for about $380 (Rose, 32). The computer was called the Altair 8800. Its programming involved pushing buttons and flipping switches on the front of the box. It didnââ¬â¢t include a monitor or keyboard, and its applications were very limited (Jacobs, 53). Even though, many orders came in for it and several famous owners of computer and software manufacturing companies got their start in computing through the Altair. For example, Steve Jobs and Steve Wozniak, founders of Apple Computer, built a much cheaper, yet more productive version of the Altair and turned their hobby into a business (Fluegelman, 16). After the introduction of the Sltair 8800, the personal computer industry became a fierce battleground of competition. IBM had been the computer industry standard for well over a half century. They held their position as the standard when they introduced their first personal computer, the IBM Model 60 in 1975 (Chposky, 156). However, the newly formed Apple Computer company was releasing its own personal computer, the Apple II (The Apple I was the first computer designed by Jobs and Wozniak in Wozniakââ¬â¢s garage, which was not produced on a wide scale). Software was needed to run the computers as well. Microsoft developed a Disk Operating System (MS-DOS) for the IBM computer while Apple developed its own software system (Rose, 37). Because Microsoft had now set the software standard for IBMs, every software manufacturer had to make their software compatible with Microsoftââ¬â¢s. This would lead to huge profits for Microsoft (Cringley, 163). The main goal of the computer manufacturers was to make the computer as affordable as possible while increasing speed, reliability, and capacity. Nearly every computer manufacturer accomplished this and computers popped up everywhere. Computers were in businesses keeping track of inventories. Computers were in colleges aiding students in research. Computers were in laboratories making complex calculations at high speeds for scientists and physicists. The computer had made its mark everywhere in society and built up a huge industry (Cringley, 174). The future is promising for the computer industry and its technology. The speed of processors is expected to double every year and a half in the coming years. As manufacturing techniques are further perfected the prices of computer systems are expected to steadily fall. However, since the microprocessor technology will be increasing, its higher costs will offset the drop in price of older processors. In other words, the price of a new compu ter will stay about the same from year to tear, but technology will steadily increase (Zachary, 42). Since the end of World War II, the computer industry has grown from a standing start into one of the biggest and most profitable industries in the United States. It now comprises thousands of companies, making everything from multi-million dollar high-speed supercomputers to printout paper and floppy disks. It employs millions of people and generates tens of billions of dollars in sales each year (Malone. 192). Surely, the computer has impacted every aspect of peopleââ¬â¢s lives. It has affected the way people work and play. It has made everyoneââ¬â¢s life easier by doing difficult work for people. It is also the very thing I wrote this paper with. Indeed the computer is one of the greatest inventions in history. Computers and Internet
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.